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Abstract. Urban emissions of greenhouse gases (GHG) represent naord @6 of the global fos-

sil fuel GHG emissions. Unless mitigation strategies arzsssfully implemented, the increase in
urban GHG emissions is almost inevitable as large metr@potireas are projected to grow twice as
fast as the world population in the coming 15 years. Moniigthese emissions becomes a critical
need as their contribution to the global carbon budget agae rapidly. In this study, we developed
the first comprehensive monitoring systems ofsGfnissions at high resolution using a dense net-
work of CO, atmospheric measurements over the city of Indianapolis. iffersion system was
evaluated over a 8-month period and showed an increase cethfzathe Hestia CQemission es-
timate, a state-of-the-art building-level emission pradwith a 20% increase in the total emissions
over the area (from 4.5 to 5.7 Mt€0.23 MtC). However, several key parameters of the inverse sy
tem need to be addressed to carefully characterize theabgagiribution of the emissions and the
aggregated total emissions. We found that spatial stresfiarprior emission errors, mostly undeter-
mined, affect significantly the spatial pattern in the imeesolution, as well as the carbon budget over
the urban area. Several other parameters of the inversimsuéficiently constrained by additional
observations such as the characterization of the GHG boyitflow and the introduction of hourly
transport model errors estimated from the meteorologisihailation system. Finally, we estimated

the uncertainties associated with remaining systematareand undetermined parameters using
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an ensemble of inversions. The total £@missions for the Indianapolis urban area based on the
ensemble mean and quartiles are 5.26 - 5.91 M&Ca statistically significant difference compared
to the prior total emissions of 4.1 to 4.5 MtC. We thereforaaode that atmospheric inversions
are potentially able to constrain the carbon budget of thg assuming sufficient data to measure
the inflow of GHG over the city, but additional information prior emissions and their associated
error structures are required if we are to determine tha@asituctures of urban emissions at high

resolution.

1 Introduction

The increase in the atmospheric concentration of carboxididCQO,) reached the fastest decadal
rate over the period 2002-2011 with-R.1 ppm/yr. Consequently, GOemains the largest single
contributor to the increase in the anthropogenic radidtiveing @,@4), with 80% of the
emissions originating from fossil fuel combustion and isidial processes. Quantification of anthro-

pogenic CQ emissions is typically accomplished via bottom-up accimgnor inventory methods
at global (ed. Marland et ai. (1;8£); Andres eJt‘aI. dé%ja&msefi-Najafabady et a‘. (20‘14)) and
regional scalefL (Gurney et‘ Jal., 2009, 2012). These inviestoemain affected by large uncertainties

Andres et aJI‘ 2014) which increases at higher spatial engboral resolutionse(g. Turnbull et al.

201{)). As legislation to regulate GHG emissions becomeeasingly likely, independent verifi-
2010).
Urban CQ emissions represent about 70% of the global emissions alhdikely increase as

cation of inventory-based anthropogenic emissions bes@nemerging need (NRC,

large metropolitan areas are projected to grow twice asafasihe world population in the coming
15 years‘ (United Nations and Social Affairs, 2&)14). Monitgrurban emissions using independent
approaches is therefore a critical need for current anddutegulation policies with atmospheric

inversion techniques being a potential candidate to peaitbbust and complementary approach to

current reporting activitie% (Nisbet and We*ss, 2010). kdeev, a better understanding of the under-
lying human activities remains critical for policy decis®and mitigation strategier (Hutyra eL al.,

2014), which implies the use of process-oriented systeighlyhresolved in both space and time

Gurney et JI‘ 2012). Current atmospheric inversion systeemain too coarse spatially and are

limited to constraining the emissions rather than the ugiahey processes (). Therefore, higher res-
olution inverse systems are needed to better understanduamdify the emissions by sector (e.g.
manufacturing sources, power generation sources, mahiless) in support of future policies.
This lack of well-established methods for quantifying st and temporally resolved GHG
emissions applies to urban areas. Recent studies havedpdokigh-resolution emission products

separated by sectch (Gurney et ‘al., 3012), but are diffioudissemble and very likely prone to sys-
tematic errors gGurne14). Atmospheric methods offanigue angle on urban emissions by

capturing the accumulated atmospheric signals emitted &ib sectors of activity (Turnbull et al.,
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). But these methods are also limited by various sowfoasors, mostly due to the atmospheric
transport model% (Gerbig etul.. 2&)63; Diaz-lsaac Lek aIlA)Zand the incorrect characterization of

prior flux errors‘(Koohkan and Bocquet, 2012), as well as leyamount of atmospheric measure-

ments available over the region of interests. At moderatelugions (10-40km), atmospheric inver-
201&‘: Schuh etah, 2613) have
the potential to provide spatially and temporally resol@HG surface fluxes (Ogle et AI.. 2&15). At

sions using regional atmospheric transport mO(JJeIS (LaueaalL

higher resolutions, several studies have shown the pataftatmospheric systems to detect emis-
sions ‘(McKain et am 201&; Kort et JI., ZOJ,Z; Bréon Jt‘al.lépbut this approach has not yet been

fully implemented over small domains with the high resautrequired for urban areas.

The inversion of large point sources and well-defined engtreas are particularly sensitive
to the transport model and the representation of plumetshes over flat or complex terrain, es-

pecially for observations within the urban domaLin (Bréoal&ZOlS). Large spatial and temporal
gradients in urban emissions generate large gradientsriasmheric mixing ratios. Therefore, the

development of accurate atmospheric modeling systemstalsdinulate these gradients is a pre-
requisite to the detection and quantification of emissiores bighly contrasted urban environment.
High-density observations combined with high-resoluatmospheric modeling has the potential to
yield such resolution over small domains. At the mechamlstiel, processes from specific sectors
of the economy shape the spatial pattern of GHG emissionsacarban centers. But atmospheric
inversions have not yet been used to separate the contrilsuftiom individual sectors of the econ-

omy %Diuricin et a”, 2012) or to separate biogenic and agbgenic sourceLs (Djuricin et HI 2010).

Expanding the atmospheric inversion systems to includetgas measurements, including isotopic
tracers, offers the capability to measure the fraction efsignals related to fossil fuel consump-

tion &Turnbull et aI.J 20]J5) and perhaps sectoral emissibmshis context, the Indianapolis Flux
Experiment (INFLUX) is exploring the technical limits ofithmethod for inferring highly resolved
anthropogenic GHG emissions estimates.

Here, we present the first atmospheric inversion systemuging high-resolution GHG emissions
of CO, at the urban scale, assimilating both atmospheric mixitiggaf greenhouse gases and me-
teorological measurements. The inverse modeling systealésto derive spatially and temporally

resolved urban C®emissions within a large urban area, starting with a higbltti®n emission

product, HestiaJ (Gurney et ail., 2012). First, we developedtanospheric Four-Dimensional Data
Assimilation (FDDA) modeling system at 1km spatial resiotassimilating continuously meteo-
rological measurements to improve the representationedlioital atmospheric dynamics. Transport
errors associated with the atmospheric modeling systertharequantified as a function of the ac-
curacy of different meteorological variables. Second, @mdnstrate the current inversion system
ability to monitor GHG emissions using a high-density spgtidistributed atmospheric observing
network of instrumented towers, using two existing higbetation CQ emissions products. Finally,
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we construct an ensemble of inverse solutions to represeiti@al sources of errors in the current

inversion system and quantify the uncertainties assatiatén parameters in the system.

2 Methods
2.1 Atmospheric modeling system

2.1.1 Atmospheric Four Dimensional Data Assimilation (FDIA) modeling system

The core of our realtime modeling systlem Deng eJ al. (2‘Olzaﬁilin this research is the Weather
Research and Forecasting model coupled with Chemistry (\@Rém, Grell et al 5)) modified
for passive tracers as‘in Lauvaux e}t Lil. (2{012). The WRF cordigun for the model physics used
here was based on previous numerical modeling studies ‘@agudet et al.‘ (ZOOQB; Rogers et al.
AZOlé); Deng et AI (201£b)) using: 1) the single-Momente®€ simple ice scheme for microphys-
ical processes, 2) the Kain-Fritsch scheme for cumulusnpeterization on the 9-km grid, 3) the

Rapid Radiative Transfer Model for longwave atmospherdiation, and the Dudhia scheme for
shortwave atmospheric radiation, 4) the Turbulent Kingtiergy (TKE)-predicting Mellor-Yamada-
Jancic (MYJ) Level 2.5 turbulent closure scheme for theulebce parameterization in the Planetary
Boundary Layer (PBL), and 5) the 5-layer thermal diffusicheme for representation of the inter-
action between the land surface and the atmospheric sddmekSkamarock et g‘l 2008).

The WRF modeling system used in this study has FDDA capaslito allow the meteoro-

logical observations to be continuously assimilated ifte model. The FDDA technique used
in this study was originally developed for MM% (Stauffer a&dam#r# 19&)4) and recently imple-
mented into WRF{ (Deng et JI., 2309) and has been used in sewed#s (e.g., Rogers et iil. (2&)13);

‘Lauvaux et al.‘ (2013)). Nudging of the wind field is appliedotgh all model layers, but nudging

of the mass fields (temperature and moisture) is only allosimul/e the model-simulated PBL so

that the PBL structure produced by the model is dominatechbyntodel physics. In this specific

application, the World Meteorological Organization (WMQjservations were assimilated into the
WRF-Chem system to produce a dynamic analysis, blending tduehsimulations and the obser-

vations to produce the most accurate meteorological dondipossible to simulate the atmospheric
CO, concentrations in space and time throughout the Indiaisapgion.

The WRF model grid configuration used for this demonstrataroimprised of three grids: 9-km,
3-km and 1-km (cf. Fig. 1 for the 3-km and 1-km grids), all ofialhare co-centered at Indianapolis,
Indiana. The 9-km grid, with a mesh of 100x100 grid point:tams the eastern part of the US
Midwest. The 3-km grid, with a mesh of 99x99 grid points, @ns$ the southern part of the state of
Indiana. The 1-km grid, with a mesh of 87x87, covers the npatiitan area of Indianapolis and the
8 eight counties surrounding Marion county. 59 verticalder-following layers are used, with the
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Figure 1. Surface meteorological observation distribution including surface madtegcal stations (red circles)
and rawindsondes (red diamonds) from the WMO database used in tReRDRA modeling system, and GO
tower locations (gold star) in the 1km simulation domain (blue square).nagd@lis is located at the center of

the domains.

center point of the lowest model layer locate@l m above ground level (AGL). The thickness of the
layers increases gradually with height, with 25 layers we860 hPa £1550 m AGL).
The FDDA parameters used in this application can be foundendX®t al. (2012a). For this ap-

plication, 3D analysis nudging and surface analysis nuglgiare applied on the 9-km grid with
reduced nudging strength compared to observation nudgimtjpbservation nudging was applied
on all grids with the same nudging strength. No mass fieldsg{ezature and moisture) observations
are assimilated within the WRF-predicted PBL. The metegickl observations assimilated into
the WRF system are based on the WMO observations distributdioebyational Weather Service
(NWS), and include both 12-hourly upper-air rawinsondes lamatly surface observations. Figure
shows the WMO surface observation distributions, indncpth significant amount of observa-
tions over the region. The gridded meteorological data weeditialize the WRF-Chem realtime
system was the National Centers for Environmental PrexficfNCEP) North American Regional
Reanalysis (NARR) available every 3 hours.

2.2 Lagrangian Particle Dispersion Modeling

The Lagrangian Particle Dispersion Model (LPDM) describdeJIiasz ) is used as the adjoint
model of the WRF-FDDA modeling system. Particles are rel@é&wen the receptors in backward
in time mode with the wind fields and the turbulence generated by tierian model WRF-FDDA.

In abackward in time mode, particles are released from the measurement losaiwhtravel to the
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surface and the boundaries. Compared to a forward modéggtidrticles here are used to estimate
fluxes, which reduces the computational cost of the simanattvery 20 seconds, 35 particles are
released at the position of the towers, which correspon@St0 particles per hour per measurement
site (or receptor). At high spatial resolutions, the pétiocations have to be stored at a much higher
frequency compared to regional applications. As a firstrestion, a particle would fly over a 1km
pixel in about 3 minutes (assuming a horizontal mean wingégmé 5 m/s). To avoid any gaps in
the particle trajectories, particle positions were reedrdvery minute. At the opposite, because the
domain is small (87km wide), the integration tinie, the time window during which the air masses
are influenced by the local surface emissions, is limite@wotiours. Here, particles were integrated
over 12 hours to ensure that particles traverse the entir@nhoin any meteorological situations.

The dynamical fields in LPDM are forced by mean horizontaldsiu, v, w), potential temper-
ature, and turbulent kinetic energy (TKE) from WRF-FDDA. Atg resolution (1 km), turbulent
motion corresponds to the closure of the energy budget &t #@e step. This scalar is used to
quantify turbulent motion of particles as a pseudo randolocity. Based on the TKE, wind, and
potential temperature, the Lagrangian model diagnoseslemt vertical velocity and dissipation of
turbulent energy. The off-line coupling between an Euleidad a Lagrangian model solves most
of the problems of non-linearity in the advection term atitiesoscale. Most of the non-linear pro-
cesses resolved by the atmospheric model are attributeddalar representing the velocity of the
particles. At each time step (here 20 seconds), particleemith a velocity interpolated from the
dynamical fields of the WRF-FDDA simulation stored every 20uatés. The time step depends on
the TKE, following the discretization scheme describe?).

The formalism for inferring source-receptor relationshippm particle distributions is described

by Seibert and Fra|H< (2004). At each time step, the fractfgradicles (released from one receptor
at one time) within some volume, gives the influence of thduwe on the receptor. If the vol-
ume includes the surface this will yield the influence of aoef sources. If the volume includes the
boundary (sides or top) it yields the influence of that pathefboundary.

2.3 The INFLUX CO5 observation tower network

The measurement network was describe(gl in (Miles et al., Pfat3C0,, CH,4, and CO. Here, we
used the daytime COmixing ratios (17-22 UTC) from nine of the twelve instrumedttowers,

corresponding to the sites operational between Septentlie @1d April 2013. The sites (1, 2, 3,
4,5,7,9, 10, and 12) are presented in Figure 2. The Cavity Riown Spectrometer instruments
8) measured the atmospherig @@Qing ratios continuously over the period, at differ-
ent sampling heights depending on the existing tower itrinature. The minimum sampling height
is 40m high at Site 10 and the maximum is 136m high at Site 2.if$teuments were calibrated

using the protocol described in Richardson ét‘ al. (2011th widrift of less than 0.2 ppm per year
across the sites, and a noise of 0.1 ppm on daily daytime geei@liles et al|, 2015).
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Figure 2. CO, tower locations (gold star) in the 1km simulation domain (blue square), withiadal towers
not available for the study period (white star), and surface meteoralcgitions (red circles) from the WMO
database used in the WRF-FDDA modeling system. Indianapolis is locatteel @nter of the domains.

2.4 Prior fluxes for COy

2.4.1 High resolution emissions: The Hestia product

The Hestia CQ emission produc& (Gurney etul.. 2&)12) was coupled to the WBBA model
to simulate the C® atmospheric mixing ratios over and around Indianapolis Hestia product

combines observations and modeling to produceg €@issions from the combustion of fossil fuels,
and is considered here as a "bottom-up” approach. A widerahdata sources are used to quantify
emissions at the scale of individual buildings and road ssus) including local traffic monitoring,
property tax assessor data, power plant emissions margtoair quality pollution reporting. The
data product includes some spatial and temporal proxiettamaourly emissions at fine spatial
scales for Marion county and the eight counties that sudddarion County. The space and time
patterns are generated for the year 2011. Emissions for aad2013 reflect the application of
scale factors derived from the DOE Energy Information Adstmation fuel statistics specific to
sector and fuel type. Hence, the magnitude of emissionsgehawer the 2011-2013 time period
but the sub-county spatial structure remains fixed. Funtbeg, the sub-monthly time structure in
all sectors other than power production are representedkeés fime cycles derived from multiple
years of monitoring data. For example, the onroad, @issions reflect a spatially-explicit use
of a mean weekly cycle (7-day cycle within a given month) arehmdiurnal cycle (24-hour cycle
within a given week). The emissions available for each oBteeonomic sectors (cf. Table 1) for the



195

200

205

210

215

220

225

years 2012 and 2013 were aggregated from the initial bttrel product down to 0.002 degree
resolution. The 0.002 gridded product was then aggregait#iaefr at 1km resolution over the WRF
grid, covering Marion county and the eight surrounding d¢ms Figure 2.4.2 (left panel) shows the
CO, emissions in ktC.km? from Hestia with the nine instrumented towers that were atyanal
during the inversion period. The 1-km WRF grid was designedotcer the area corresponding to
the 9 counties, except for a minor fraction extending beytbiedrectangular domain. The total €O
emissions for the 9 counties around Indianapolis are 6.82 idt the year 2012 and 7.17 MtC for
2013. The 8-month total emissions over the inversion domejresenting most of the 9 counties
slightly cropped following the WRF simulation domain, aré@MtC for September 2012 to April
2013.

2.4.2 The Open-source Data Inventory for Anthropogenic COZODIAC) emission data

We used the Open-source Data Inventory for Anthropogenig (@DIAC) emission datgi (Oda and Maksthov,
) as an alternative prior for inversion. The versiomef®DIAC emission data used in this study

is based on emission estimates updated using the CDIAC Igholokanational fossil fuel emission

estimates (http://cdiac.ornl.gov/trends/emis/meth.htenl; last access 27 March, 2015) and the year

2013 edition of BP statistical review of world enerfyThe emission spatial distributions were es-

timated at 1x1km resolution using the same method preséambda and Maksvut(u (20J11). The
emissions from power plants are mapped using the geolocagorted in the CARbon Monitoring

and Action (CARMA) global power plant database (www.camng:. last access 27 March, 2015)
and the rest of the emissions (non point source emissioas)istributed using the satellite observed
nightlight data. The nightlight data used in the version ®18C emission data were developed
using a new algorithm, improving the representation of s areas compared to the original ver-
sion Oda et alf(Z—OiO). ODIAC emission data only indicatesitimy emissions (based on CDIAC
monthly emission data) and do not have diurnal and weekljesyé-urther details of the ODIAC
are described iEd@)lS).

2.5 Prior emission errors

The complexity of the underlying model used to generate téstid emission product at very high
resolution {.e. building-scale) limits our ability to rigorously quantifipe associated errors, includ-
ing their spatial and temporal structures. As a simplifiggrapch, we defined the error variances as
a percentage of the net emissions for all the economicaiseexcept for the utility sector for which
the emissions are better constrained. Hourly energy ptaustatistics and direct measurements
provide more accurate hourly emissions for energy produdiie. utility sector). Therefore, we de-

fined the error variances as 60% of the net emissions at 1kotutEs) in the initial case for all the

Lhttp:/Avww.bp.com/en/global/corporate/about-bp/egergonomics/statistical-review-of-world-energy/sttitial-
review-downloads.html; last access 27 March, 2015
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Figure 3. CO, a priori emissions using the Hestia product aggregated at 1km reso{lgéfgrand the space-
based emissions from ODIAC downscaled at 1km resolution (right)

sectors except the utility sector. Overall, the aggregaiteat variance is about 25% of the total emis-
sions over the entire domain for each 5-day periods. We pagd a second test with much larger
prior errors {.e. 100% of the net emissions) to evaluate the convergence dfithese emissions in

a very under-constrained system (cf. Section 4.4). Forglhg&a error structures, we used a similar

approach tb Lauvaux et ‘«':JI (2612)3. a correlation length exponentially decaying with the dist
applied among urban pixels only (based on the National LamgeCDatabase 2010). The distance-
based correlation matrix({) is created first and then combined with land cover types &mhe
land cover type assuming no correlation between urban andirtzan pixels (). The combined
matrix is created assuming equal weights from both coicelanatrices, using's = \/Cr,./Cyrp.

For the definition of the correlation lengflh we tested the impact on the posterior emissions using
varying distances,e. no correlation L.=4km and.=12km. The use and the definition of correlation
length in prior emission errors is discussed in sedtionahd, considered as an additional contribu-
tion to the overall uncertainties, mainly associated wiih tlefinition of the correlation length, in
section 4.4.

The length of the inversion window was defined by the averdgegth of synoptic and mesoscale
events over the area. Typically, wind directions changé Wie passage of weather systems, which
results in incomplete surface coverage in terms of towetpfits if the inversion time window is
too short. The minimum of 5 days correspond to 2 to 3 synomti@itions on average, and repre-
sent the minimum length to constrain the whole area. As werirfor 5-day emissions, temporal
correlations are considered negligible between two imgenaindows. To evaluate this assumption,
we performed a similar inversion using 10-day periods amdpare the results in section 3.6.
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2.6 Observation errors
2.6.1 Observation error variances

For the transport model errors, we propagated the errotseo?MRF-FDDA system into the inver-
sion system through the error variances. The propagatierrofs was performed in two steps: 1. we
guantified the Mean Absolute Errors (MAE) at hourly time ssaih WRF-FDDA using the avail-
able surface WMO stations to define the hourly performanclkenifriodel, and 2. we scaled the error
variances using the normalized distance gfalistribution over each 5-day periods. This technique
removes singular time steps during which the transport inpeldormed poorly. The balance be-
tween prior error statistics and observation errors wakiaeted using the? normalized distancs,
defined by = 1[(y — Hxo)” (HBH” +R)~!(y — Hxo)], similarly to‘ Kaminski et Jl‘ (2061).

n

For the first step, the hourly MAE averaged over the domaifgr the wind speed and direction
were used to define the hourly transport errors. Because thessurements were assimilated in
the WRF-FDDA simulation, the true MAE is most likely undetissated. However, we use these
model-data residuals as a representation of the relatiferpgances of the WRF-FDDA model at
the hourly time scale. In principle, meteorological errcagnot directly be diagnosed from modeled
CO, mixing ratios to describe the GQrariances in the inversion. Indeed, both flux and transport
errors affect the simulated GAOmixing ratios. Instead, we only diagnosed transport erfarm
meteorological errors, which were then transformed intorlyoscaling factors applied to hourly
CO, variances. To quantify these scaling factors, an error in@de created to generate transport
errors for the CQ@ mixing ratios depending on both errois. in wind speed and direction. An
adjustment coefficient defined as the ratio between the WdAE and the median of the MAE
over the 5-day period was computed for both variables. Theman of the two ratios define the
hourly adjustment coefficient. To avoid using the time stésng which the model is inaccurate,
the hourly errors were used to scale the variamégs‘or a grid point(z, j) (i.e. the diagonal terms
in R) using the following relationship:

2 Espd Edir\ 2
el . =maxr(—— Eimi (1)
(,uspd ’ dir ) it

2}

with e,,4 andeg;, the hourly mean errorg, the median of the 5-day errors, aeﬂm the first-
guess variance. The first-guess variance is our best-gsticamputed from a chitest (cf.[2.8)
using the normalized distanceover each 5-day periods (Tarant@OOA)s constant for each
5-day windows, and is applied to correct for unbalancedr éerons (ratio of prior emission errors to
number of unknowns). The hourly scaling factors are appbdte first-guess variance corrected by
. For non-diagonal matrices, as described in the next sedtie normalized distancecorrection
cannot be applied directly to the variances. Otherwise;dhe=ction would be applied multiple times
through the covariances and therefore over-estimate taletwors by several factors. In other terms,

applying a multiplicative factor to the variances would difigghe scaling through the covariances.

10
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To compensate for the over-estimation by the error coveeisnwe applied the square root of the
scaling factor (ﬂ.ef,j) which is assuming a linear relationship between variaacescovariances
(covg y = corry 4.0,.04). This technique was tested over multiple 5-day segmertgerduced a
systematically better normalized distancé.e. closer to one).

Over the inversion period (September 2012 to April 20133, ritedian of the wind speed MAE
is about 0.8m3s! and 12. These two termg.;, andy,,q were used for the inOn an hourly basis,
the ratio between the median and the hourly MAE would defieeatijustment of the initial error,
e.g. multiplied by 2 for a wind speed MAE between 0.8 and 1.6 Th.8Ve compared this method to

using a constar; ; over time but no hourly adjustment based on the MAE in Se(ién
2.6.2 Observation error correlations

At high resolutions, spatial and temporal correlationsrangport model errors become increas-
ingly important. Past studies have approached the probleroaaiser resolutioneg. Gerbig et al.

200 ):‘ Lauvaux et al\ (ZOOL)b)) and found that error coverés are significant when the distance

between observation locations is low. Using a diffusionatigun model with an ensemble of trans-

port simulations at 8-km resoluticln, Lauvaux eHaI. (20041)mated the averaged correlation length
in transport model errors at about 30-40km. Between the Iktowers, the averaged distance is
about 40km, which suggests that spatial error correlatiogng be significant. However, the correla-
tion length may vary in space and time, and is likely to depemehodel resolution and physics. To
evaluate the sensitivity of the inverse emissions to spatiar correlations, we assumed a relatively
small correlation length and an exponentially decaying ehdadr the distance, with },,=10km,
following the equation:

d2
Y]

=exp “ive (2)

Ci,j

obs

with C%7

the correlation coefficient between two tower locatigrsnd j, andd; ; the distance
between the towerisand;. The observation error correlation matéi;,; has to be symetric, positive
semidefinite, with the diagonal terms equal to one. Furtheestigations of’,;, showed that a

small number of eigenvalues were negative and required sooatifications of the inital matrix

before inversion. Followinb Brissette et‘ AI. (2607), wedus@ iterative process to filter negative
eigenvalues. The negative values were replaced by sligbsitive eigenvalues, and the correlation
matrix was re-generated using the original eigenvectong matrix was slightly modified to be
symetric and with positive correlations only. The iteratprocess converged for all the inversion
periods, modifying the correlation by less than 10%.
Temporal error correlations at Pf%zqueni:ye.(hourly) can also affect the simulated atmo-
I

spheric mixing ratiog (Lauvaux et al., 2009b). However, lih&ch inversion system as defined here

is less affected by the impact of hourly error correlatiassthe atmospheric data are assimilated in
a single block. Spatially, emission corrections may stlyy but the overall city-wide emissions are
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unlikely to be affected. Therefore, no temporal correlatieas introduced in the errors. We quanti-
fied the impact of spatial error correlations by performirggasitivity study, comparing the impact
of error correlationj.e. non-diagonal terms iR to the initial configuration in sectian 4.1. Further
investigation is required to define more completely theiapahd temporal error correlations in high
resolution transport simulations and their impact on tlhverige emissions, similar to Lauvaux et al.
2009b) at coarser resolution.

2.7 Boundary inflow: data selection

The constant flow of air through the boundaries of a limitedadin atmospheric simulation repre-

sents a significant amount of carbon compared to the locastomis, and therefore is a critical quan-

tity that has to be characterized in the inversion sys}tem:k@@e et aI\, 2016: Lauvaux et‘ gl.. 2012).

Several studies have suggested to simply measure thisityuaptvind of the metropolitan area
&Kort etal. 201H; McKain et ‘ 2012) similar to aircrafass-balance techniqugs (Cambaliza let al.,

‘20141;

Karion et al.‘. 2015). However, background measurésnesn be affected by local fluxes
and/or the local atmospheric dynamics which would impairsppatial representativity as a back-
ground measurement. The inflow of air follows primarily thaevdirection and its variability in
time and space, directly affecting our ability to measue=upwind conditions in any meteorolog-
ical situations. Therefore, no measured background caratean would remain constant as the air
moves across the domain. Advection-diffusion and verticxing modify the mixing ratios as air
masses move over the city, increasing the representatiorseassociated with upwind measure-
ments.

To measure the background air, the initial design of the Xxnfletwork included two sites cov-
ering the two major wind directions in the area, Site 1 for the north-westerly through westerly
flows and Site 9 for northerly through easterly Wir{ds. Mileale(2015) compared several sites of
the network (.e. Sites 1, 4, 5, and 9) by computing the fraction of days cowrdng to low atmo-
spheric concentrations for each site. This analysis asstimécleaner air should be measured at the
background sites. The results indicate that Site 1 showkthest concentrations on average over
time, whereas Site 9 is systematically biased by a couptagesf a ppm. Sites 4 and 5 are clearly
influenced by local emissions and should not be used as bagakgsites.

We selected Sites 1 and 9 as our least biased backgroundasitmsr analysis and defined the
background concentration for each hourly measurmentslodénapolis following different sce-
narios. These scenarios correspond to the definition ofgilaéna concentrations at a given time, or
under specific conditions. To evaluate the impact of the digfimof the boundary conditions on the
inverse emissions, we produced several inverse emissgng different selection methods. First,
we used a fixed site for the entire inversion period, usindithely concentrations at the exact hour.
This scenario is the simplest option for limited networkst@fers. Second, we used an upwind
model, selecting the sites based on the hourly surface wnedtobn in the center of Indianapolis.
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Figure 4. Selection of the background site to determine the upwind concentration®06r Indianapolis,
using two semicircles (135and 315) and hourly modeled wind directions from the WRF-FDDA system at
three locations across the city. The emitting area defined by Hestia iseatgdsn grey. The distance between

Site 1 and Site 2 (about 35km) corresponds to an advection time of albhouirg.

The upwind model selected Site 1 when the wind was betweeh di3% 315, and Site 9 for 315
to 135 (cf. Fig.[4). Third, we used a daily minimum measured acrbssnetwork to evaluate the
importance of hourly changes. The results are presentezttiod 3.5.

2.8 Inversion methodology

The inversion system solves for a 5-day averaged emissiconvef 87x87 unknowns as described
(20

in Tarantola

x=x0+BH (HBH" + R)™'(y — Hzx) (3)

04) by minimizing the cost function J anddwing the equation:

wherex are the unknown emissions, the a priori emission estimatg, the observationsd the
influence functions, and&k and B the uncertainty covariance matrices of the observatiodstlaa
prior emissions respectively. We can define the posterior eovarianceA for sources given by the
following expressioM—! = B~ + HTR™'H.

No diurnal cycle has been considered here as the advectainmbsses across the domain takes
less than 5 hours. With the first observation time being 17 WIZbm/1pm local time), the cor-
rection of the emissions applies only to daytime emissigt@n(8am). In other terms, nighttime
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emissions cannot be constrained using daytime obseregdiiorsuch a small domain. For the total
emissions presented in this study, the posterior emissiorrespond to the inverse results for the
period 12 - 22 UTC, combined with the prior emissions (Hgdta the period 23 - 11 UTC. We
performed a second case using a slightly different time aund.e. 20 to 23 UTC, due to the lack
of a precise definition of the afternoon, corresponding @otly to the well-mixed conditions in the
PBL. We followed the optimal time window defined 'M» to evaluate the sensitivity

of the inverse emissions to the observation time window3d&).

3 Results
3.1 Sectoral contributions

We show in Figuré 5 the sectoral contributions at each towaeatlons based on Hestia 2012 emis-
sions combined with the WRF-FDDA-LPDM footprints for the ntlorof October 2012. The sim-
ulated CQ mixing ratios correspond to the 1-km surface footprints borved with the aggregated
1km Hestia emissions, at the hourly time scale, averagedtbeemonth of October 2012 for the
hours 17-22UTC. The atmospheric mixing ratios have not lmeemalized to reflect the impact of
lower sampling heights on the magnitude of the atmosphégitats. This effect is simulated by
the Eulerian and the Lagrangian models later in this stubg. fWo sites with two lowest sampling
heights (at 40m high) are the sites 10 and 12. Atmospheriarer@ment at Site 12 is low despite the
low sampling height. However, the enhancements at Sitesd@are large, mostly because of the
presence of two power plants. The mobility sectoe, {raffic emissions, is the largest contributor to
the atmospheric enhancements (45% of the total enhancgnatithe nine tower locations, similar
to the emission ratios for the same sector (44%). The secomiiloutor is the utility sector, with
two towers showing very large contributions (about 50%0l arost the towers between 10 and 20%
(except Site 9 with only 2% of the signals). In terms of enassj the utility sector represents 20% of
the emissions over the nine counties. This sector is clesndier-represented by most towers, over-
represented at two sites (3 and 10), and absent at Site 9.0FhRamform distribution is explained
by the locations of the power planise. with only few large point sources over the domain. Atmo-
spheric signals from the industry sector represents al@fiét dn average, similar to its associated
emission contribution of about 9%. The commercial and esdidl sectors represent respectively
6% and 9% of the atmospheric enhancements, compared to 6%amd the emissions. Finally,
the airport and the railroad sectors represent less thana2¥ @ the total signals, similar to the

emission contribution.
3.2 CO; inverse emissions over Indianapolis (Initial configuratian)

We present here the results for the initial configuratiorhefinversion system. Some of the assump-
tions made in this inversion are discussed later as additiorknowns. Here, the a priori emissions

14



Monthly average sectoral atmospheric mixing ratios on October 2012
(averaged over 17-22UTC)
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Figure 5. Sectoral contributions (in ppm) using the WRF-FDDA-LPDM footprints lanlresolution com-
bined with the Hestia sectoral G@missions for October 2012, except for the Railroad and the airpctdrse
representing about 2% of the emissions and the atmospheric enhantseme

Emission
Sector Com | Ind | Road | NonRoad| Res | Util

Atmos.
signals 6% | 13% | 45% 5% 9% | 20%

Surface
Emiss. 6% 9% | 44% 6% 8% | 20%

Table 1. Sectoral contributions (in %) in the simulated tower mixing ratios averagedtbe network of 9

towers compared to the surface £€é&missions (Hestia).

correspond to the Hestia emissions aggregated at 1km tiesollihe prior errors were set to 60% of
the net emissions, including an urban correlation lengtkof to define the spatial error structures
as described in sectibn 2.5. The background mixing ratios wefined by the observed mixing ratios
405 at Site 1 (SW of Indianapolis). Figure 6 shows the Gfnissions time series averaged over 5-day
periods from Hestia (upper panel, in red) and the correspgrmbsterior emissions (upper panel, in
blue) from September 2012 through April 2013. The errorefmh 5-day estimate are significantly
reduced after inversion, from about 25% to around 9% on geecr@ver the 8-month period, the
inverse emissions remain similar to the a priori Hestia sioiss, with some additional variability.
410 The emissions are increased during the first few months ¢8dgar to mid November). The total
aggregated emissions are about 20% higher than the Hesgaiens over the period (5.5MtC ver-
sus 4.56MtC). The emission corrections are shown in Figuflewer left panel) with an overall
increase following the beltway and the residential and cencial areas. The error reduction (upper
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Figure 6. 5-day inverse emission estimates in ktC for Hestia (upper panel, in r&dA©(lower, in green),

and their respective inverse emissions (in blue) for the period Sept&@b2 - April 2013

left panel) is about 30% in the urban area, with larger valnéise southern part of town, where the
tower density is higher (cf. Fig2?).

3.3 Impact of a priori emissions (ODIAC)

The ODIAC CQG emissions were used as a priori emissions, which also implaetprior emission
errors due to the scaling of the variances with the net eorissin addition, a larger error was used
for ODIAC, i.e. 100% at the 1-km pixel level. Figure 6 shows the 5-day emissioom ODIAC
(lower panel, in green) and the corresponding inverse éomisglower panel, in blue). The tempo-
ral variability in the inverse emissions shows some diffiess compared to the initial case, which
suggests that the spatial distribution of the prior emissiand their associated errors can impact
the temporal variability of the inverse solution. Howehg variability remains similar to the initial
case, with lower emissions around the end of 2012 and eatl$.Zthe error reduction presented in
Figure 7 (upper right panel) shows a homogeneous reductiabaut 30%, driven primarily by the
homogeneous variances and the spatial error correlatmascovering a larger surface extent than
the Hestia-based inversion estimate. The emission canscflower right panel) are similar to the
error reduction spatial distribution. These results ssgtfeat the assumed correlation length over
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Figure 7. Error reduction (in %) (upper panels) and relative change in emissiftesinversion (in %)j.e.
differences between the prior and the posterior emissions (lower paugisg the Hestia product (left) and
ODIAC (right) as prior emissions

the urban area forces the spatial distribution of the irveraissions rather than the variances. Oth-
erwise the corrections would be larger in the downtown aMsapresent three other cases in section
[4.4, and discuss the current limitations due to the abseheglbcharacterized error structures in
the prior emissions. The total emissions are indicated bield with an a prior total of 4.14MtC,
slightly lower than Hestia, and an inverse estimate of 5@Marger than inverse estimates using
Hestia. The assumptions in the prior errors drive to a lasgent the larger emission correction
when using ODIAC, considering that ODIAC errors are lardpant Hestia.
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3.4 Transport model errors: scaling of variances

The atmospheric simulations using the WRF-FDDA modelingesyswere evaluated using three
meteorological surface stations in the Indianapolis ameadth the horizontal mean wind speed and
direction. The PBL depth evaluation over two months (Septm®ctober 2013) was used to select
the model physics configuration and quantify the impact efrtteteorological assimilation system

Deng et a‘., in prep.). Over a 2-month period, the simul&Bdtl depths were compared to obser-
vations from a HALO Photonics Doppler lidaHALO measures high-resolution vertical velocity
variance and aerosol backscatter signal strength profiltscan be used to measure the mixing
depth. The systematic model-data mismatch (mean erro)5sni over the two months, and the
mean absolute error is 275 m. These mismatches are rejasivell over the 2-month period corre-
sponding to less than 7% of the PBL depth. Considering moeiébpnances at higher frequencies
(hourly to daily variability), we used surface wind measunests to quantify the hourly variances
as a first-order assessment of model errors. The PBL depthatased to estimate model errors at
the hourly time scale. In urban environments, the spatedlignts in emissions are extremely large
compared to natural ecosystems. Therefore, wind erroraffect significantly the spatial distribu-
tion of the inverse emissions if a large source is attribtibea near-zero emission area. To describe
hourly model errors, we used wind direction and speed asgsax order to propagate model errors
into the inversion and avoid source attribution errors.

Wind speed and direction model-data differences were wsschie the hourly errors.€. the vari-
ances in the observation error covariance majassociated with the modeled mixing ratios. The
monthly statistics for both variables are shown in Figureiithe quartiles of the mean error, and
the median of the mean absolute errors over each month. Wathieebourly variability (represented
by the 25% and 75% quatrtiles) is large, the monthly mediamoar (about 12.2 for wind direction
and 0.8ms! for wind speed over the entire period). These results sudhaswhereas monthly
systematic transport errors are small, the hourly erronsbealarge. The simulated meteorological
conditions can be off by 45 degrees or more for a specific ¥biens. We corrected for hourly
errors by introducing the hourly wind errorsih(diagonal elements)as explained in section . When
using the scaling of the variances of the observations basedodel transport errors, the inverse
emissions aggregated over the period decrease slightlpa@ to the initial case (5.73MtC versus
5.79MtC (cf. Tablé 2).

Overall, the WRF-FDDA system improves significantly the agad performance of the WRF
atmospheric model compared to the historical moaerfo assimilation of meteorological data), as

shown iA Rogers et H (2013). For this second steppropagating hourly variances into the inver-
sion system, which is equivalent to filtering the transpastel results, the impact is less significant
over the entire time periods. Errors associated with spegiéteorological events have been con-
siderably reduced by removing specific days. But over theo&tmtime period, no bias has been

2http://www.esrl.noaa.gov/csd/projects/influx/
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Figure 8. Quartiles of the monthly mean error and mean absolute errors (blaclodénfor the horizontal
mean wind direction (top panel) and speed (bottom panel) at 1km resoligiog measurements from WMO

surface stations.

associated with the hourly transport errors. This analysggests that long-term model improve-
ments are more important than propagating short-term nuefadiencies to avoid misattribution of

hourly signals.
3.5 Sensitivity to the background concentrations

We present here the results of the different strategies toseéeffine the background concentrations.
The first strategy defines the background concentrationsimg uhe concentrations at Site 1 at the
exact time of the observations. Site 1 is the climatolodieakground site located upwind about 60%
of the time. The second strategy uses the optimal site mtathsed on the wind direction (upwind
model), as described earlier. Sites 1 and 9 are the two aptiepending on the wind direction.
When one site is not operational, the other is used even if thd direction is not optimal. The
last strategy uses the daily minimum at the upwind site,lainto the second strategy. This last
option offset potential temporal variations observed meharly afternoon. The risk of sampling low
concentrations at later times is not negligible. This stggtis the least likely option for realistically

sampling the background. Table 2 shows that the two firdegfias produce very similar inverse total
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’ Case H L=12km ‘Lowtrafﬁc‘ Low utility ‘ Largeo’ ‘ ODIAC ‘L:4km‘

Prior 4.56 4.15 4.2 4.56 4.14 4.56
Posterior 5.79 5.16 5.24 6.13 5.35 5.5
’ Case HWind model‘ Daily Min ‘ 10 days ‘ e ‘20-23UTC‘ L:Okm‘
Prior 4.56 4.56 4.56 4.56 4.56 4.56
Posteriof 5.53 6. 5.88 5.73 5.69 4.73

| Case || 45Sites (A)] 4 Sites (B)| 4 Sites A (L=4km) 4 Sites B (L=4km) | |

Prior 4.56 4.56 4.56 4.56
Posterio 5.36 5.52 5.13 5.17

Table 2. Prior and posterior emissions from the various inversion configuratefesred as the initial inversion
case (L=12km), a decrease of 40% in the a priori traffic emissions {taific), a decrease of 40% in emissions
from the a priori energy production sector (Low utility), using large peimission variances (Largs;), using
ODIAC as prior emissions (ODIAC), assimilating only 4 sites out of 9 (4 Sigsand 4Sites (B)), assimilating
only 4 sites out of 9 with a lower correlation length of L=4km (4 Sites A (L=4land 4 Sites B (L=4km)),
varying the correlation lengtfi in the prior emissions errors (L=0km and L=4km), varying the definitibn o
the background conditions using the wind direction (Wind model) or the mimirofithe day (Daily Min),
assimilating over a 10-day time window instead of 5 days (10 days), filtdwagly observations using wind

model errors X.€), and varying the afternoon window for observations (20-23UTC)

emissions with 5.53 MtC (wind model) and 5.5 MtC (L=4km), wéns the third strategy increases
the total emissions significantly (6 MtC). The daily minimsiare selected over the time window
17-22UTC, with the lowest values being usually observeavbeh 20 and 22UTC. This technique
introduces a positive bias in the inverse solution by silgc late afternoon mixing ratios at the
upwind site {.e. lower concentrations), artificially increasing the envssi over the city. This last
method is also the least realistic because the lowest ctratiens are often observed at the end of
the day, which is inconsistent with the advection time ofraasses across the city. The first two
strategies represents the difference between Site 1 andlsircation of Site 1 and Site 9 depending
on the wind direction. If Site 1 is contaminated by any logéghals, the current analysis would not
diagnose its impact. An additional site measuring backgioconcentrations will be deployed to
test the potential impact of upwind sources.

3.6 Uncertainty assessment: ensemble approach of inversgtienates

An ensemble approach of inversion configurations was dedigm quantify systematic errors due
to the various assumptions made in the urban inversionraystee ensemble consists of two sets
of results, the first representing prior-related casedh siscvarying the spatial error structures in

prior emission errors, and the second set of results retatéte observations and their associated
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uncertainties. The first set of results, presented in Figl(tight gray), show three different correla-
tion lengths L (as described in Sectjon]2.5) and a differeiotr gODIAC). The impact of various L

is clearly the main contributor to the changes in total emoiss even if the fully uncorrelated prior
emission scenario seems very unlikely considering the igd&ta and model parameters in the Hestia
and ODIAC products. We discuss the impact of L on the spat#tidution and the total emissions
in section 4.4. The use of ODIAC is also important with natiske differences in the spatial distri-
bution. The second set of results, in gray, includes diffeassumptions related to the time window
for the observations (20-23UTC instead of 17-22UTC). Méeal. ’(ZIS) defined the well-mixed
conditions based on the temporal variability in the4d@ixing ratios, and found that the period 20-
23 UTC would be more appropriate to avoid a late morning ttimmsin the PBL depth. The results
are presented in Talle 2. The difference with the initiaba@snains small which may suggest that
the WRF-FDDA model is able to simulate the late PBL growth mélarly afternoon. The ensemble
includes several other configurations including the useonirly transport errors based on hourly
wind error statistics, and the definition of the backgrouadaentrations. The two sets were used to
define the quartiles of the ensemble, nataskmble spread in Figure 9. The ensemble mean is about
5.66MtC, the second and third quartiles at 0.23MtC from tleam) the first and fourth quartiles at
0.85MtC from the mean. The inverse emission using HestiaGIDEAC are statistically different
from the 50-75% of the ensemble mean. However, the definitfidhe correlation length seems to
encompass both prior and posterior solutions, especialiyden no correlation in prior emission
errors and the cask = 4km. We discuss the sensitivity to the prior error structuresdatiori 4.4.
The third set of results exploring network design cases antbgal emissions, in Fig. 9 (dark gray),
were not included in the ensemble and are discussed lateciing 4.3.

The time series presented in Figure 10 was created by thetsanseibsets of configurations (ex-
cluding the top 6 cases presented in Figure 9 in dark grayigin10, the dark grey zone represents
the ensemble spread whereas the light gray zone includesnd@mble spread and the posterior
uncertainties of the cases. Earlier findings describedattithe series of the posterior emissions (cf.
Section 3.2) are confirmed here in the ensemble, with higiéstons than the Hestia prior (dashed
line) during the first 3 months of the period, lower emissiahthe end of December 2012 and early
in January 2013, and an overall agreement in the first mortth3.2Some short-term variations are
consistent across the different configuratiang, the large increase in late October 2012.

4 Discussion

4.1 Impact of transport errors at high resolution

Urban emissions is likely to require the development of liggolution inversion system, potentially
reaching the physical limits of the numerical scheme assiompin the mesoscale model, such as
the turbulence closure scheme in the PBL. In other termstiskeof violating the parameterized
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Figure 9. Whole-city inverse emission estimates in MtC over September 2012 - A8 88ing the different
inverse system configurations and prior emissions

sub-grid scale turbulence assumption becomes non-nelgligi stable and neutral conditions with
turbulent eddies smaller than the model resolution. At stistances, the plume structures from
isolated sources may not follow the well-mixed assumptioinie model. In addition to physical
540 limits in numerical schemes, the local atmospheric dynansiinfluenced by large spatial gradients
in the surface energy fluxes. Under these conditions, sewteystematic errors in the transport
model are numerous and difficult to overcome. The use of aorategical assimilation systerme.

WRF-FDDA, improves the model performancies (Rogers ‘Jt all3p0but large discrepancies can
still affect the wind direction and speed (cf. Figure 8). Auhal evaluation of the near-field atmo-
545 spheric dynamics is still required to quantify the modelpagformances and the representation of
fine-scale structures, mostly visible around the majorseaiat short distances. Here we improved
our initial WRF modeling system with the FDDA methodologydamopagated errors into the inver-
sion scheme. We evaluated the impact of the spatial stegtarthe transport model errors through
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Figure 10. Ensemble of 5-day inverse emission estimates in ktC using multiple cortf@usa.e. varying the
prior error correlation length, the background definition, or the trarispodel errors, from September 2012 to

April 2013

the use of correlation lengths, similar {o (Lauvaux e&@) who diagnosed structures from a
small ensemble of perturbed simulations. In this study,cthreelation length scale was applied to
the observation error covariance matrix with an exponéytikecaying model. Considering the use
of our high resolution WRF-FDDA simulation over a highly hetgeneous landscape, we reduced
the length scale from 30km (in the original study) to 10kmepresent the potentially smaller spatial
structures in transport errors. When introducing theserémvees, the posterior emissions end up at
4.93MtC, with a smaller correction to the prior emissionmpared to the reference inversion, as
expected when increasing the errors associated with adigmms. This initial inversion shows the
importance of potential error structures at fine scales.exupbral correlation was introduced due
to the lack of information at these scales and the batch simeisystem which limits the impact of

hourly error correlations.
4.2 Network design: impact of tower locations and heights
4.2.1 Network design of surface towers

The deployment of tower networks for emission monitoringhty depends on the objectives of
the study. We propose here to discuss the monitoring of thissemns from the entire urban area,
and the mapping of emissions at higher resolutions. For teedbjective, we compare two sub-
networks, presented in Table 2, which correspond to twanmgdthetwork configurations with one

upwind site, one downwind site, and three centrally locabeders. We also used two different cor-
relation lengths (L=4km and L=12km) in the prior error sttis as this parameter can significantly
impact the inverse solution (cf. Section 4.4). By assumitayger correlation length (L=12km), the

two networks produce fairly different total emissions watl86MtC and 5.52MtC, which are further

23



570

575

580

7R [P e e Pecere P P e T T T T T

% *
L=4km'(A) L=4km (B)
* % k'
=100 -E0 1] 50 100

Figure 11. Emission correction (in %), correspondiong to the ratio of emission &haegveen the prior and

the posterior emissions, for 2 different sub-networks. Both netwiadtsde 4 tower locations selected for both
maximum enhancements over the city and background sampling. Bottsiowe were performed over the
period September 2012 - April 2013, using the initial configuration.

decreased with lower L (respectively 5.13MtC and 5.17M#&gyure ?? shows that the main dif-
ference between the two networks (left column comparedéaitiht column) originates from the
magnitude of the correction in the center of the city and atstection of the beltway (SW and N
sections) which shifted from a negative correction (lovedt panel) to a positive correction (lower
right panel). The impact of the correlation length (4km wverd2km) is similar to the results using
the entire network (cf. Figure 13), confirming that prior egion error structures do not only alter
the total emissions but also the location of the sourcesisagsked in Section 4.4. Overall, the tower
deployment is highly dependent on the assumptions madeiprtbr emission errors. If large cor-
relations are to be true, a network of four towers would seffacconstrain the urban emissions. But
this assumption is highly uncertain, meaning that netwedigh will require a better understanding

and a better quantification of prior error structures beémgrobust conclusions can be made.
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4.2.2 Sampling heights: Sensitivity to surface emissions

The various GHG analyzers deployed around the Indianapadis are all on tower structures, with
four instruments at 120m or more, four on 60-90m towers, anddit about 40m high. The sampling
height remains a critical parameter in the mesoscale mowéls large vertical gradients in stable
to neutral stability conditions that are diffcult to simtdacorrectly. In well-mixed conditions, 40m
towers may still be affected by vertical gradients in thefaeer atmospheric layer, and very likely
to suffer from large model errors. The Atmospheric Surfaegdr (ASL) is not well-simulated in
mesoscale systems, and t at this elevation, even highécaledsolution is unlikley to improve the
vertical mixing near the surface. In Figure 12, we show ttiliémce functions for the nine towers
used in this study. Towers 1 and 9, located outside of the@itlye West and the East of the network
respectively, have a smaller impact on the surface emissidrese two towers are the tallest struc-
tures instrumented for the experiment, at 136m and 121m figh WRF-LPDM footprints repre-
sent the increased sensitivity to the surface when thelisgadmnditions are not convective. Because
the inversion period covers winter, observations in therafion are still affected by vertical gradi-
ents in CQ despite selecting the period of maximum solar radiatiorth@te low elevations above
ground-level, vertical gradients can be observed as shnM’lés etal. ’(2?5). Further studies are
needed to estimate the capability of mesoscale models tdatiencorrectly the vertical gradients in
the ASL during well-mixed, stable, and neutral periods.

4.3 Sectoral emission detection and quantification

In the current study, the emissions over Indianapolis npelitan area were inverted using the total
CO;, concentrationd,e. without any consideration for the underlying emission psses. In section
13.1, the sectoral contribution is presented in the simdlatéxing ratios, using the forward simu-
lations. To investigate the potential of detection of thganaconomical sectors in the inversion,
i.e. traffic and energy production, we performed two additiongéisions decreasing the emissions
from these two sectors, by 40% for the utility sector and b%20r the traffic sector. The total prior
emissions decreased from 4.56MtC originally to 4.2MtC aribMItC (cf. Table 2). The inversion
was able to retrieve most of the decrease, ending at 5.24MIG A6MtC respectively. For the util-
ity sector, the inverse solution distributed the correttacording to the spatial structures in prior
emission errors (not shown here), failing to identify psety where the power plants were located.
When assuming no spatial correlation in prior emission efriite main emission correction was
located in the South West quadrant of town, around the majormpawer plant (Harding Street).
For the low traffic scenario, the spatial pattern of the eimissorrection matches the beltway, even
though the pattern may be primarily constrained by the pitesd variances associated with traffic

emissions. This first order assessment of emission detestiggests that the inversion system is
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Figure 12. Influence functions in ppm/(gC.ni.h~!) for the nine instrumented INFLUX towers aggregated
over the 8-month period. Sites 1 and 9 show the lowest sensitivity to treceypfimarily due to higher sampling
heights under low vertical mixing conditions. Additional effects on shaower sensitivity due to the proximity

of the sources is not considered here.

able to retrieve major changes in sector emissions. Additimvestigations are needed to define the
exact potential of the system for both trend detection ircjpesectors and spatial variability.

4.4 Impact of prior error statistics on inverse emissions

The definition of the prior emission errors remains subyecdit this point, with no existing rigorous
guantification of emission errors at high resolutions. Weduhe difference between several exist-
ing emission productd.é. Hestia and ODIAC) at the pixel-level to define the prior enariances,
equivalent to 25% of the net emissions aggregated over thitho At the pixel level, this corre-
sponds to an uncorrelated error of about 60% for Hestia. Weased this error to 200% to generate
a purely data-driven solution, with a low correlation lémgf 4km. The inverse emissions aggre-
gated over the domain are equal to 5.57MtC compared to 5.5dv&C the same time period for
the initial case. The two solutions remain similar desgite tery large prior emissions error. This
results confirms that the total prior errors do not over-trams the inverse solution. But solving for
spatial structures across the area requires additionainiaftion related to the spatial structures of
the prior emissions errJrs Saide et @011). Methodebtp define the error structures exisg(

W

u et al. (2013)), assuming that simple parameters can limiapt, such as a correlation length in
an exponentially decaying scenario. Here, the use of @iioellength over the urban area increases
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Figure 13. Relative change in emissions after inversion (in %) using no correlatigthdfeft), a correlation
length of 4km within the urban area (middle), and 12km within the urban(gig#d) in the prior emission error

covariances

the complexity of such a model. But this approach was assumbdtter represent the spatial co-
herence of incorrect emission factors for the mobility seair any systematic errors affecting the
underlying models used in the Hestia emission product. AEnmmodel would ignore the urban
area and potentially propagate corrections to non-urbeasain Figurg 13, we show the difference
between the inverse emissions and the prior, using thréerelift correlation lengths,e. L=0km
(left panel), L=4km (middle panel), and.=12km (right panel).The spatial distributions vary from
localized adjustments around the sites (fs10Okm), to an overall adjustment of the road emissions
when assuming large correlations{12km). Clearly, the spatial distribution of the flux cotieas
are driven by the prior emission error structures. In additihe total emissions vary from a mi-
nor correction (4.73MtC with L=0km), to more important aactions (5.5MtC and 5.79MtC with
L=4km and L=12km). Therefore, the quantification of priorission errors and their associated
structures is a critical component of the information. Theelation legnth impacts the total inverse
solution and the spatial distribution of the solution, whielates to the sectoral attribution prob-
lem, as the structures dictate the distribution over diffiérareas of the city. One could argue that
no correlation in the prior emission errors may be an extrease, considering that the underly-
ing models used in the emission products such as Hestia oenelnission factors with their input
data. Therefore, spatial correlations would be likely fieetfthe emissions for specific combustion
processes but not across the city as whole. Knowing that&fssions combine several sectors of
activity which are unrelated for the most part, spatialduites in emission errors may be spatially
limited once combined into total GQprior emissions. For these reasons, future studies will hee
address carefulle this key parameter in the inversion sys&milar work has been accomplished at

1, 2013)

the regional scales, using optimization methods such a
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5 Conclusions

This study presents a high resolution inversion systemcdasea Four Dimensional Data Assimi-
lation meteorological system to simulate the atmosphagnachics at 1km resolution over the city
of Indianapolis. The inverse emissions were evaluated ®veonths {.e. September 2012 to April
2013) using two different a priori emissions, Hestia, asstatthe-art building-level emission prod-
ucts, and ODIAC, a space-based emission product. The neferi@version produced whole-city
inverse emissions of 5.5 MtC, about 20% higher than the mnissions from Hestia (4.6 MtC).
Total CO, emissions for the Indianapolis urban area based on the &éfsenean and quartiles are
5.26 - 5.91 MtC,.e. a statistically significant difference compared to the twiomptotal emissions
of 4.1 to 4.5 MtC. Single configurations of the inversion eystroduced lower posterior uncertain-
ties than the ensemble spread, reflecting the uncertaediEsciated with the various assumptions.
Transport model errors were estimated from the WRF-FDDAesystnd introduced in the inversion
system through the use of hourly variances adjusted acwptdithe hourly model performances.
The upwind conditions were prescribed by using two towecatied at about 20 to 30km from the
city, with an hourly site selection based on wind observetidlowever, several parameters of the
inverse system remain under-constrained, at the origineoéhsemble variability. In particular, spa-
tial structures in prior emission errors, mostly undeteenl, affect significantly the spatial pattern
in the inverse solution, as well as the carbon budget oveutban area. We therefore conclude
that atmospheric inversions are able to constrain the odshdget of the whole city to an absolute
uncertainty of about 25%, but additional information oropemissions and more specifically about
their associated error structures are required if atmagpimersion systems are built to determine

the spatial structures of urban greenhouse gas emissibighatesolutions.
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